Math 601 Final (sample test)

Name:

This exam has 11 questions, for a total of 150 points.
Please answer each question in the space provided. Please write full solutions, not just answers. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score
1	10	
2	10	
3	15	
4	10	
5	10	
6	15	
7	20	
8	20	
9	15	
10	15	
11	10	
Total:	150	

Question 1. (10 pts)

(a) Consider the matrix $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 3 & 0 \\ 2 & -4 & 2\end{array}\right]$. The eigenvalues of A are 1,2 and 3 . Is A diagonalizable? Justify your answer.

Solution: A is a 3×3 matrix with 3 distinct eigenvalues, so A is diagonalizable.
(b) Suppose $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{7}$ is linear mapping. Can F be surjective? Justify your answer.

Solution: We have the following formula

$$
\operatorname{dim} R^{4}=\operatorname{dim} \operatorname{Ker} F+\operatorname{dim} \operatorname{Im} F
$$

Therefore $\operatorname{dim} \operatorname{Im} F \leq 4$. But the dimension \mathbb{R}^{7} is 7 , and $4<7$. So F cannot be surjective.

Question 2. (10 pts)

Determine whether

$$
f(z)=e^{-y}((x+1) \cos x-y \sin (x))+i e^{-y}((x+1) \sin x+y \cos x)
$$

is analytic on \mathbb{C}, where $z=x+i y$.

Solution: Let

$$
\begin{gathered}
u(x, y)=e^{-y}((x+1) \cos x-y \sin (x)) \\
v(x, y)=e^{-y}((x+1) \sin x+y \cos x)
\end{gathered}
$$

They are clearly differentiable on \mathbb{C}. Check Cauchy-Riemann equations

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=e^{-y}(-(1+x) \sin (x)+\cos (x)-y \cos (x)) \\
& \frac{\partial v}{\partial y}=e^{-y}(-(1+x) \sin (x)+\cos (x)-y \cos (x))
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial u}{\partial y} & =e^{-y}(-(1+x) \cos (x)+y \sin (x)-\sin (x)) \\
\frac{\partial v}{\partial x} & =e^{-y}((1+x) \cos (x)+\sin (x)-y \sin (x))
\end{aligned}
$$

So $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$. It follows that f is analytic on \mathbb{C}.

Question 3. (15 pts)

Evaluate the integral

$$
\int_{C} \frac{e^{z}}{z^{2}-4 z+3} d z
$$

where C is the circle centered at 0 with radius 4 .

Solution:

$$
\frac{e^{z}}{z^{2}-4 z+3}=\frac{e^{z}}{(z-1)(z-3)}=\frac{e^{z}}{2}\left(\frac{1}{z-3}-\frac{1}{z-1}\right)
$$

So

$$
\int_{C} \frac{e^{z}}{z^{2}-4 z+3} d z=\int_{C} \frac{e^{z}}{2}\left(\frac{1}{z-3}-\frac{1}{z-1}\right) d z
$$

Since C is the circle centered at 0 with radius 4 , both 1 and 3 are inside C. We apply Cauchy's formula and have

$$
\int_{C} \frac{e^{z} / 2}{z-3} d z=2 \pi i\left(e^{3} / 2\right)
$$

and

$$
-\int_{C} \frac{e^{z} / 2}{z-1} d z=-2 \pi i(e / 2)
$$

So

$$
\int_{C} \frac{e^{z}}{z^{2}-4 z+3} d z=\pi i\left(e^{3}-e\right)
$$

Question 4. (10 pts)

Evaluate

$$
\int_{\gamma}\left(3 z^{2}+1\right) d z
$$

where γ is the curve $\gamma(t)=\left(\sin t, t^{2}+t\right)$ for $t \in[0, \pi]$, that is, the curve starts at $(0,0)$ and ends at $\left(0, \pi^{2}+\pi\right)$.

Solution: Notice that $g(z)=3 z^{2}+1$ is analytic on \mathbb{C} which is a simply connected domain. Now that two end points of the curve γ is 0 and $i\left(\pi^{2}+\pi\right)$. So we have

$$
\int_{\gamma}\left(3 z^{2}+1\right) d z=F\left(i\left(\pi^{2}+\pi\right)\right)-F(0)=-i\left(\pi^{2}+\pi\right)^{3}+i\left(\pi^{2}+\pi\right)
$$

where $F(z)=z^{3}+z$.

Question 5. (10 pts)

Use the residue theorem to evaluate the following integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{2-\sin \theta}
$$

Solution: On the unit circle, we have the identity

$$
z=e^{i \theta}
$$

Then $\sin \theta=\frac{1}{2 i}\left(z-z^{-1}\right)$. Also, $d z=i e^{i \theta} d \theta$. So

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{d \theta}{(2-\sin \theta)} & =\int_{C} \frac{2 i}{4 i-\left(z-z^{-1}\right)} \frac{d z}{i z} \\
& =\int_{C} \frac{2}{4 i z-z^{2}+1} d z \\
& =\int_{C} \frac{-2}{(z-(2+\sqrt{3}) i)(z-(2-\sqrt{3}) i)} d z
\end{aligned}
$$

where C is the unit circle. Notice that $(2+\sqrt{3}) i$ is outside C and $(2-\sqrt{3}) i$ is inside the circle. Write

$$
f(z)=\frac{2}{4 i z-z^{2}+1}
$$

By the residue theorem, we have

$$
\int_{C} \frac{-2}{(z-(2+\sqrt{3}) i)(z-(2-\sqrt{3}) i)} d z=2 \pi i \operatorname{Res}(f,(2-\sqrt{3}) i)=2 \pi i \frac{-2}{-2 \sqrt{3} i}=\frac{2 \pi}{\sqrt{3}}
$$

So

$$
\int_{0}^{2 \pi} \frac{d \theta}{2-\sin \theta}=\frac{2 \pi}{\sqrt{3}}
$$

Question 6. (15 pts)

Use the residue theorem to evaluate the following integral

$$
\int_{-\infty}^{\infty} \frac{\cos x}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x
$$

Solution:

$$
\int_{-\infty}^{\infty} \frac{\cos x}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x
$$

is the real part of

$$
\int_{-\infty}^{\infty} \frac{e^{i x}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x
$$

So we only need to integrate the latter. We have

$$
\frac{e^{i z}}{\left(z^{2}+1\right)\left(z^{2}+4\right)}=\frac{e^{i z}}{(z+i)(z-i)(z+2 i)(z-2 i)}
$$

Note that only i and $2 i$ are in the upper half plane. Write

$$
f(z)=\frac{e^{i z}}{\left(z^{2}+1\right)\left(z^{2}+4\right)}
$$

So the residue theorem implies that

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{e^{i x}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x=2 \pi i(\operatorname{Res}(f, i)+\operatorname{Res}(f, 2 i))=\frac{\pi}{6}\left(2 e^{-1}-e^{-2}\right) \\
\operatorname{Res}(f, i)=\frac{e^{-1}}{(2 i)(3 i)(-i)}=\frac{e^{-1}}{6 i} \\
\operatorname{Res}(f, 2 i)=\frac{e^{-2}}{(3 i)(i)(4 i)}=\frac{e^{-2}}{-12 i}
\end{gathered}
$$

Question 7. (20 pts)

Given the matrix

$$
A=\left[\begin{array}{rrr}
4 & 0 & -2 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

(a) Find all eigenvalues of A.

Solution:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
4-\lambda & 0 & -2 \\
0 & 1-\lambda & 0 \\
1 & 0 & 1-\lambda
\end{array}\right| \\
& =(4-\lambda)(1-\lambda)(1-\lambda)+1 \cdot 2(1-\lambda) \\
& =\left(\lambda^{2}-5 \lambda+6\right)(1-\lambda)
\end{aligned}
$$

So the eigenvalues are 1,2 and 3 .
(b) Find a basis for each eigenspace.

Solution: When $\lambda=1$, then

$$
A-I=\left[\begin{array}{ccc}
3 & 0 & -2 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

whose echelon form is

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

So $v_{1}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ is an eigenvector belonging to the eigenvalue $\lambda=1$.
The cases for $\lambda=2$ and 3 are similar.

$$
v_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

is an eigenvector belonging to the eigenvalue $\lambda=2$.

$$
v_{3}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

is an eigenvector belonging to the eigenvalue $\lambda=3$.
(c) Determine whether A is diagonalizable. If yes, find an invertible matrix S so that

$$
S^{-1} A S
$$

is diagonal. If not, explain why.
Solution: A is diagonalizable, since A is a 3×3 matrix with 3 linearly independent eigenvectors. Let

$$
S=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Then we have $S^{-1} A S=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$

Question 8. (20 pts)

Let V be the subspace of \mathbb{R}^{4} spanned by

$$
\vec{v}_{1}=\left[\begin{array}{l}
0 \\
4 \\
0 \\
0
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
1 \\
3 \\
0 \\
1
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
4 \\
5 \\
8 \\
4
\end{array}\right] .
$$

(a) Use Gram-Schmidt process to find an orthonormal basis of V.

Solution: Note that we are trying to find an orthonormal basis. Let

$$
w_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

$$
v_{2}-\frac{\left\langle w_{1}, v_{2}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

So $w_{2}=\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ 0 \\ 1 / \sqrt{2}\end{array}\right]$

$$
v_{3}-\frac{\left\langle w_{1}, v_{3}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}-\frac{\left\langle w_{2}, v_{3}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}=\left[\begin{array}{l}
0 \\
0 \\
8 \\
0
\end{array}\right]
$$

So $w_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$. Now w_{1}, w_{2} and w_{3} form an orthonormal basis of V.
(b) Find the projection of

$$
\vec{x}=\left[\begin{array}{c}
3 \\
-1 \\
5 \\
0
\end{array}\right]
$$

onto V.
Solution: Since w_{1}, w_{2} and w_{3} form an orthonormal basis of V.

$$
\operatorname{Proj}_{V}(x)=\left\langle x, w_{1}\right\rangle w_{1}+\left\langle x, w_{2}\right\rangle w_{2}+\left\langle x, w_{3}\right\rangle w_{3}=\left[\begin{array}{c}
3 / 2 \\
-1 \\
5 \\
3 / 2
\end{array}\right]
$$

Question 9. (15 pts)

Let V be the vector space spanned by $\left\{e^{x}, e^{-x}, x e^{x}, x e^{-x}\right\}$. Accept as a fact that

$$
e^{x}, e^{-x}, x e^{x}, x e^{-x}
$$

form a basis for V. Let us denote this basis by \mathfrak{B}. Let

$$
T(f)=2 f-f^{\prime}
$$

be a linear transformation from V to V.
(a) Find the \mathfrak{B}-matrix of T.

Solution:

$$
T\left(e^{x}\right)=2 e^{x}-e^{x}=e^{x}
$$

similarly, we have

$$
\begin{gathered}
T\left(e^{-x}\right)=3 e^{-x} \\
T\left(x e^{x}\right)=x e^{x}-e^{x} \\
T\left(x e^{-x}\right)=3 x e^{-x}-e^{-x}
\end{gathered}
$$

So

$$
[T]_{\mathfrak{B}}=\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 3 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

(b) Is T an isomorphism?

Solution: T is an isomorphism, since the determinant of $[T]_{\mathfrak{B}}=1 \cdot 3 \cdot 1 \cdot 3=$ $9 \neq 0$.

Question 10. (15 pts)

Given

$$
A=\left[\begin{array}{rrrrr}
2 & 2 & -3 & 1 & 13 \\
1 & 1 & 1 & 1 & -1 \\
3 & 3 & -5 & 0 & 14 \\
6 & 6 & -2 & 4 & 16
\end{array}\right]
$$

(a) Find a basis of $\operatorname{Ker}(A)$.

Solution: First, use elementary row operations to get the reduced row echelon form of A.

$$
\operatorname{rref}(A)=\left[\begin{array}{rrrrr}
1 & 1 & 0 & 0 & -2 \\
0 & 0 & 1 & 0 & -4 \\
0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So all elements in $\operatorname{Ker} A$ are of the form

$$
t\left[\begin{array}{r}
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{r}
2 \\
0 \\
4 \\
-5 \\
1
\end{array}\right]
$$

So

$$
v_{1}=\left[\begin{array}{r}
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{r}
2 \\
0 \\
4 \\
-5 \\
1
\end{array}\right]
$$

form a basis of the kernel.
(b) Find a basis of the row space of A.

Solution: The three nonzero rows in the reduced row echelon form of A form a basis of the row space of A. That is

$$
\begin{gathered}
u_{1}=(1,1,0,0,-2) \\
u_{2}=(0,0,1,0,-4) \\
u_{3}=(0,0,0,1,5)
\end{gathered}
$$

form a basis of the row space of A.

Question 11. (10 pts)

Suppose λ is an eigenvalue of an $n \times n$-matrix A.
(a) Show that λ^{n} is an eigenvalue of A^{n}.

Solution: Since λ is an eigenvalue of A, then there exists a nonzero vector v such that

$$
A v=\lambda v .
$$

It follows that

$$
A^{2}(v)=A(A v)=A(\lambda v)=\lambda A v=\lambda^{2} v
$$

By induction, we see that

$$
A^{n}(v)=\lambda^{n} v
$$

So λ^{n} is an eigenvalue of A^{n}.
(b) Consider the matrix

$$
B=c_{n} A^{n}+c_{n-1} A^{n-1}+\cdots+c_{1} A+c_{0} I_{n}
$$

where c_{i} are real numbers. Show that the real number

$$
\mu=c_{n} \lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda+c_{0}
$$

an eigenvalue of B.
Solution: Let v be the same vector from part (a). Then by part (a), we have

$$
\begin{aligned}
B(v) & =\left(c_{n} A^{n}+c_{n-1} A^{n-1}+\cdots+c_{1} A+c_{0} I_{n}\right)(v) \\
& =c_{n} A^{n}(v)+c_{n-1} A^{n-1}(v)+\cdots+c_{1} A(v)+c_{0} v \\
& =\left(c_{n} \lambda^{n}+\cdots c_{1} \lambda+c_{0}\right) v=\mu v
\end{aligned}
$$

So μ is an eigenvalue of B.

